How to use the site

On this site you will find pictures and information about some of the electrical and mecanichal relics that the Frank Sharp Private museum has accumulated over the years .
There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Washer Rama Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.
Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.
OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the right blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. If doing so it starts from the most recent post to the older post doing simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, reaching the bottom end of each page then click on the Older Post button.


- If you arrived here at the main page via bookmark you can visit all the site scrolling the right blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.


- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Technology has made us leap in terms of saving time and efforts. From the conventional pounding of clothes on the rock to the modern cubical white boxes which have several buttons for washing your clothes delicately or permanent press, we have come far from primitive hiccups of civilization.

Unlike other collector's items like watches, radios or cars, antique washing machine models do not allure the collectors, who try to avoid them as much as they can. One of the main reasons is that they are difficult to maintain.

1900 to 1935 saw the advent of old washing machines that were powered by gasoline or electric motors. Gasoline was hazardous and had environmental issues.

Before 1900, antique washing machines were actually run by people. But, invention of internal combustion engine and electric motor changed the scenario and electric powered washing machines became popular.
Since the old washing machines did not have on-off switch, if the clothes or hand of the user was caught in it, the electric chord had to be pulled out or the user could lose her anatomy. Basically, the safety mechanism was primeval.

History of antique washing machine can be traced back to 1800's when rotary washing machines were invented. Then in 1908, Hurley in Chicago introduced Thor - a vintage washing machine that comprised of a galvanized tub and an electric motor. The tub was wooden and turned 8 revolutions before reversing. It was designed by Fisher.

In 1893, Maytag Corporation started manufacturing washing machines and in 1907 they introduced a wooden tub in it.
Upton Machine Company or Whirlpool started in 1911 in Michigan. It manufactured electric motor driven wringer washers.

In 1920 rocker type machines became extremely popular. Judd rocker was amongst them but this washing machine did not have wringer safety release. There was no earth and the terminals were not insulated.
Later, Horton Company in Indiana started manufacturing electric machines, which featured a powered wringer. Additionally, it had a safety release.

J. T. Winans got patent for washing machine that had pulley, which was driven by a water motor. The water motor was belted to the pulley and this was connected to a tap. The water powered motors did not become popular and eventually the company shifted its focus to electrical powered washers.

One of the most interesting antique washing machines belonging to early 1900s was the Laun-Dry-Ette which was manufactured by Home Specialty Company, Ohio. There was no wringer present in it but it comprised of two cups (having an agitator), which produced a twisting motion for better cleaning. This old model is a darling of many vintage washing machine collectors.
According to estimation, there were more than 1000 companies in the early 1900s which were manufacturing washing machines. Most of them were small scale companies, but they all had resources to manufacture electric washers.

In 1691, first British patent was issued for the category of Washing and Wringing Machines.

In 1782, British patent for a rotating drum washer was issued to Henry Sidgier.
Nathanial Briggs was the first American to get the patent in this category.
Louis Goldenberg of New Jersey invented electric washer in the early 1900s.
Since he was employed with Ford, all inventions created by him during that time belonged to Ford.

In 1928, US sales increased to more than 900,000 units, but the sales dipped by 1932 to about 600,000 units only, due to Great Depression.

In 1930s spin dryers were introduced and the entire mechanism was hemmed in a cabinet. Manufacturers started paying lot of attention to safety issues. Spin dryers replaced the electric powered wringers.
Almost 60% of the households in US owned electric washing machines in 1940s.

In 1937, Bendix was issued a patent for automatic washing machine. The machine had to be anchored or fixed to the ground so that it didn't shift while functioning. Bendix Deluxe was introduced in 1947 and it was a front loading machine. It was priced at $250.
GE was the first company that introduced top load washing machines.

1940s and 1950s saw proliferation of washing machines that were mainly top loading.
Some companies manufactured laundry machines which were semi-automatic. The user was supposed to intervene with the wash cycle in order to wring and rinse the clothes.

Every OLD Washing Machine saved let revive knowledge, noise, thoughts, wash engineering, moments of the past life which will never return again.........
These were the days when some washing machines were more like machine tools and bristled with levers and gears. There was a sense of occasion when they were powered up and then helping to guide soaking sheets through those powerful rollers with torrents of soapy steaming water (roughly) pouring back into the tub.

Many contemporary appliances would not have this level of staying power, many would ware out or require major services within just five years and of course, there is that perennial bug bear of planned obsolescence where components our deliberately designed to fail or manufactured with limited edition specificities.

.......The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory.....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !


©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Sunday, October 7, 2012

PHILIPS ADG073 YEAR 1979.
















The PHILIPS ADG073  is a Conventional domestic washing appliance having a wash chamber  having a floor adapted to accommodate objects to be washed and within which wash liquid is pumped by a pump having an impeller and driven by an electric motor the PHILIPS ADG073   a front loading dishwashers provide two racks for stacking dishes, one in the lower zone of the wash chamber and the other in the upper zone. Such dishwasher is normally designed to fit under a typical domestic kitchen bench top with a maximum height of 900mm. Generally the lower rack Is designed to take larger dishes, e.g. plates up to 280mm in diameter. The PHILIPS ADG073   is  provided with a wash Inox steel tub of substantially parallelepipedonal shape having an open side which can be closed by means of a loading door. The tub houses one or more spray arms each of which is rotatable in a substantially horizontal plane and associated with a respective basket for supporting dishes or items to be cleaned.
The wash tub generally has a substantially square cross section the center of which generally coincides with the axis of rotation of the spray arms, the latter having lengths, just less than a side of the tub. In this way it is possible to make the most of the hydraulic action of the spray arms, while keeping to a minimum the area of the cross section of the tub which is not acted on by the spray arms during their rotation. The PHILIPS ADG073   performs  automatic dishwashing , including the steps of feeding a wash tub  of the machine with a predetermined water volume; adding a predetermined amount of detergent to said water volume; heating the so formed washing liquor; and subjecting the articles to be washed to the chemical and mechanical action of the washing liquor.

The  PHILIPS ADG073  has a fascinating washing noise which is very particular during the start of any water load.
Unlikely any other model which preloads water in the tub before main pump starts , the PHILIPS ADG073   starts the main pump  with the steel tub empty at the same time loads water in it. Here below the description of the process,

The Main pump is started by timer and runs and water is feeded at same time in the steel tub (main water valve opened via timer and pressostat) at the  bottom plastic filter sump holding group.
 In this condition the main pump is performing an initial liquid suction at lower water levels therefore it's doing an hicckup noise because of the low water level, mixed with air, which is anyway rising up in the tub. The hicckup is because water is in low quantity condition and the pump power has the capability to suck it fast and completely  pumps it fast in the washers. When water level is increasing the hicckup noise is becoming stronger and more frequent until the water level is sufficient to feed the pump with more water than air.  When the level is increasing more the pump input is feeded at this point only by water and it's stabilising therefore the pumping work to almost normal condition and the noise is even progressively becomed normal, then the water feeding is stopped at reaching the level determined by pressostat which starts the timer motor to go further in program sequence. This system was featured to obtain a water level which have a partial relation with the quantity /type of load of stuff in the machine.
So an empty machine becomes  minor quantity of water in respect of a full loaded of stuff machine.



Koninklijke Philips Electronics N.V. (Royal Philips Electronics Inc.), most commonly known as Philips, (Euronext: PHIA, NYSE: PHG) is a multinational Dutch electronics corporation.

Philips is one of the largest electronics companies in the world. In 2009, its sales were €23.18 billion. The company employs 115,924 people in more than 60 countries.[1]

Philips is organized in a number of sectors: Philips Consumer Lifestyles (formerly Philips Consumer Electronics and Philips Domestic Appliances and Personal Care), Philips Lighting and Philips Healthcare (formerly Philips Medical Systems).
The company was founded in 1891 by Gerard Philips, a maternal cousin of Karl Marx, in Eindhoven, Netherlands. Its first products were light bulbs and other electro-technical equipment. Its first factory survives as a museum devoted to light sculpture.[2] In the 1920s, the company started to manufacture other products, such as vacuum tubes (also known worldwide as 'valves'), In 1927 they acquired the British electronic valve manufacturers Mullard and in 1932 the German tube manufacturer Valvo, both of which became subsidiaries. In 1939 they introduced their electric razor, the Philishave (marketed in the USA using the Norelco brand name).

Philips was also instrumental in the revival of the Stirling engine.

As a chip maker, Philips Semiconductors was among the Worldwide Top 20 Semiconductor Sales Leaders.

In December 2005 Philips announced its intention to make the Semiconductor Division into a separate legal entity. This process of "disentanglement" was completed on 1 October 2006.

On 2 August 2006, Philips completed an agreement to sell a controlling 80.1% stake in Philips Semiconductors to a consortium of private equity investors consisting of Kohlberg Kravis Roberts & Co. (KKR), Silver Lake Partners and AlpInvest Partners. The sale completed a process, which began December 2005, with its decision to create a separate legal entity for Semiconductors and to pursue all strategic options. Six weeks before, ahead of its online dialogue, through a letter to 8,000 of Philips managers, it was announced that they were speeding up the transformation of Semiconductors into a stand-alone entity with majority ownership by a third party. It was stated then that "this is much more than just a transaction: it is probably the most significant milestone on a long journey of change for Philips and the beginning of a new chapter for everyone – especially those involved with Semiconductors".

In its more than 115 year history, this counts as a big step that is definitely changing the profile of the company. Philips was one of few companies that successfully made the transition from the electrical world of the 19th century into the electronic age, starting its semiconductor activity in 1953 and building it into a global top 10 player in its industry. As such, Semiconductors was at the heart of many innovations in Philips over the past 50 years.

Agreeing to start a process that would ultimately lead to the decision to sell the Semiconductor Division therefore was one of the toughest decisions that the Board of Management ever had to make.

On 21 August 2006, Bain Capital and Apax Partners announced that they had signed definitive commitments to join the expanded consortium headed by KKR that is to acquire the controlling stake in the Semiconductors Division.

On 1 September 2006, it was announced in Berlin that the name of the new semiconductor company founded by Philips is NXP Semiconductors.

Coinciding with the sale of the Semiconductor Division, Philips also announced that they would drop the word 'Electronics' from the company name, thus becoming simply Koninklijke Philips N.V. (Royal Philips N.V.).


PHILIPS FOUNDATION:

The foundations of Philips were laid in 1891 when Anton and Gerard Philips established Philips & Co. in Eindhoven, the Netherlands. The company begun manufacturing carbon-filament lamps and by the turn of the century, had become one of the largest producers in Europe. Stimulated by the industrial revolution in Europe, Philips’ first research laboratory started introducing its first innovations in the x-ray and radio technology. Over the years, the list of inventions has only been growing to include many breakthroughs that have continued to enrich people’s everyday lives.




In the early years of Philips & Co., the representation of the company name took many forms: one was an emblem formed by the initial letters of Philips & Co., and another was the word Philips printed on the glass of metal filament lamps.



One of the very first campaigns was launched in 1898 when Anton Philips used a range of postcards showing the Dutch national costumes as marketing tools. Each letter of the word Philips was printed in a row of light bulbs as at the top of every card. In the late 1920s, the Philips name began to take on the form that we recognize today.



The now familiar Philips waves and stars first appeared in 1926 on the packaging of miniwatt radio valves, as well as on the Philigraph, an early sound recording device. The waves symbolized radio waves, while the stars represented the ether of the evening sky through which the radio waves would travel.



In 1930 it was the first time that the four stars flanking the three waves were placed together in a circle. After that, the stars and waves started appearing on radios and gramophones, featuring this circle as part of their design. Gradually the use of the circle emblem was then extended to advertising materials and other products.



At this time Philips’ business activities were expanding rapidly and the company wanted to find a trademark that would uniquely represent Philips, but one that would also avoid legal problems with the owners of other well-known circular emblems. This wish resulted in the combination of the Philips circle and the wordmark within the shield emblem.



In 1938, the Philips shield made its first appearance. Although modified over the years, the basic design has remained constant ever since and, together with the wordmark, gives Philips the distinctive identity that is still embraced today.



Gerard Philips:

Gerard Leonard Frederik Philips (October 9, 1858, in Zaltbommel – January 27, 1942, in The Hague, Netherlands) was a Dutch industrialist, co-founder (with his father Frederik Philips) of the Philips Company as a family business in 1891. Gerard and his younger brother Anton Philips changed the business to a corporation by founding in 1912 the NV Philips' Gloeilampenfabrieken. As the first CEO of the Philips corporation, Gerard laid with Anton the base for the later Philips multinational.



Early life and education

Gerard was the first son of Benjamin Frederik David Philips (1 December 1830 – 12 June 1900) and Maria Heyligers (1836 – 1921). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands; he was a first cousin of Karl Marx.



Career

Gerard Philips became interested in electronics and engineering. Frederik was the financier for Gerard's purchase of the old factory building in Eindhoven where he established the first factory in 1891. They operated the Philips Company as a family business for more than a decade.




Marriage and family

On March 19, 1896 Philips married Johanna van der Willigen (30 September 1862 – 1942). They had no children.

Gerard was an uncle of Frits Philips, whom he and his brother brought into the business. Later they brought in his brother's grandson, Franz Otten.


Gerard and his brother Anton supported education and social programs in Eindhoven, including the Philips Sport Vereniging (Philips Sports Association), which they founded. From it the professional football (soccer) department developed into the independent Philips Sport Vereniging N.V.



Anton Philips:

Anton Frederik Philips (March 14, 1874, Zaltbommel, Gelderland – October 7, 1951, Eindhoven) co-founded Royal Philips Electronics N.V. in 1912 with his older brother Gerard Philips in Eindhoven, the Netherlands. He served as CEO of the company from 1922 to 1939.



Early life and education

Anton was born to Maria Heyligers (1836 – 1921) and Benjamin Frederik David Philips (December 1, 1830 – June 12, 1900). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands. (He was a first cousin to Karl Marx.) Anton's brother Gerard was 16 years older.



Career

In May 1891 the father Frederik was the financier and, with his son Gerard Philips, co-founder of the Philips Company as a family business. In 1912 Anton joined the firm, which they named Royal Philips Electronics N.V.

During World War I, Anton Philips managed to increase sales by taking advantage of a boycott of German goods in several countries. He provided the markets with alternative products.

Anton (and his brother Gerard) are remembered as being civic-minded. In Eindhoven they supported education and social programs and facilities, such as the soccer department of the Philips Sports Association as the best-known example.

Anton Philips brought his son Frits Philips and grandson Franz Otten into the company in their times. Anton took the young Franz Otten with him and other family members to escape the Netherlands just before the Nazi Occupation during World War II; they went to the United States. They returned after the war.

His son Frits Philips chose to stay and manage the company during the occupation; he survived several months at the concentration camp of Vught after his workers went on strike. He saved the lives of 382 Jews by claiming them as indispensable to his factory, and thus helped them evade Nazi roundups and deportation to concentration camps.

Philips died in Eindhoven in 1951.



Marriage and family

Philips married Anne Henriëtte Elisabeth Maria de Jongh (Amersfoort, May 30, 1878 – Eindhoven, March 7, 1970). They had the following children:

* Anna Elisabeth Cornelia Philips (June 19, 1899 – ?), married in 1925 to Pieter Franciscus Sylvester Otten (1895 – 1969), and had:
o Diek Otten
o Franz Otten (b. c. 1928 - d. 1967), manager in the Dutch electronics company Philips
* Frederik Jacques Philips (1905-2005)
* Henriëtte Anna Philips (Eindhoven, October 26, 1906 – ?), married firstly to A. Knappert (d. 1932), without issue; married secondly to G. Jonkheer Sandberg (d. September 5, 1935), without issue; and married thirdly in New York City, New York, on September 29, 1938 to Jonkheer Gerrit van Riemsdijk (Aerdenhout, January 10, 1911 – Eindhoven, November 8, 2005). They had the following children:
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, October 2, 1939), married at Waalre on February 17, 1968 to Johannes Jasper Tuijt (b. Atjeh, Koeta Radja, March 10, 1930), son of Jacobus Tuijt and wife Hedwig Jager, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, April 3, 1946), married firstly at Calvados, Falaise, on June 6, 1974 to Martinus Jan Petrus Vermooten (Utrecht, September 16, 1939 – Falaise, August 29, 1978), son of Martinus Vermooten and wife Anna Pieternella Hendrika Kwantes, without issue; married secondly in Paris on December 12, 1981 to Jean Yves Louis Bedos (Calvados, Rémy, January 9, 1947 – Calvados, Lisieux, October 5, 1982), son of Georges Charles Bedos and wife Henriette Louise Piel, without issue; and married thirdly at Manche, Sartilly, on September 21, 1985 to Arnaud Evain (b. Ardennes, Sedan, July 7, 1952), son of Jean Claude Evain and wife Flore Halleux, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, September 4, 1948), married at Waalre, October 28, 1972 to Elie Johan François van Dissel (b. Eindhoven, October 9, 1948), son of Willem Pieter
Jacob van Dissel and wife Francisca Frederike Marie Wirtz, without issue.








No comments: